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The analogy between streamline curvature and buoyancy 
in turbulent shear flow 

By P. BRADSHAW 
Aerodynamics Division, National Physical Laboratory, Teddington 

(Received 13 June 1968) 

A formal algebraic analogy is drawn between meteorological parameters, such 
as the Richardson number, and the parameters describing the effect of rotation 
or streamline curvature on a turbulent flow. The analogy between the phenomena 
is a good first approximation. Semi-quantitative use of the analogy to apply 
meteorological data to curved shear layers shows that the effects of curvature 
on the apparent mixing length are appreciable if the shear-layer thickness exceeds 
roughly 1/300 of the radius of curvature; larger effects may occur in compressible 
flow. Application of the Monin-Oboukhov formula considerably improves the 
agreement between prediction and experiment in boundary layers on curved 
surfaces. 

1. Introduction 
It is well known that certain laminar flows over curved or rotating boundaries 

have analogues in flows with buoyancy-for instance, in special cases the flow 
between two concentric rotating cylinders, and its stability to infinitesimal dis- 
turbances, can be described by the same equations as the free convection flow 
between a pair of parallel horizontal plates a t  different temperatures. Scorer 
(1967) has used an analogy between buoyancy and curvature in a discussion of 
the stability of inviscid rotating flows. The analogy between the two types of 
body force is not so close in turbulent flows, because buoyancy effects depend on 
the temperature fluctuation 0 whereas curvature (‘centrifugal ’ or Coriolis) effects 
depend on the circumferential velocity fluctuation u: however, the correlation 
coefficient between 0 and u is numerically at least 0.7 in a shear flow over a 
slightly heated surface (Johnson 1959) so that a buoyancylcurvature analogy, 
like the Reynolds analogy between heat and momentum transfer, should be a 
good first approximation to the truth, and of practical use in the case of small 
body forces. Some parallels can be drawn between the dimensionless parameters 
in the two cases, no matter how large the body forces; apparently this was first 
done by Prandtl (1930, reprinted 1961) using classical mixing-length arguments, 
since rediscovered separately by meteorologists and workers on curved flows. 
(I am grateful to Prof. G. L. Mellor for drawing my attention to Prandtl’s paper.) 
Little use seems to have been made of %he analogy for turbulent flow, the only 
reference known to me being the paper by Thomas & Townsend (1  957)) who use 
the known properties of turbulent flow between rotating cylinders to illuminate 
an account of thermal convection. 
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In  $ 2  of the present paper, the analysis customarily used to derive buoyancy 
parameters, like the Richardson number, from the equations of motion is used to 
derive equivalent parameters for curved flow; the correspondence between the 
two sets of parameters (and a third set for flows rotating about a spanwise axis) 
seems to be entirely consistent. The obvious way to test and use this correspon- 
dence is to predict curvature effects by using one of the well-known empirical 
formulae which predict buoyancy effects as a function of Richardson number, 
and this is done in $ 3. The predicted effects of curvature are surprisingly large 
(10 yo change in mixing length in a boundary layer with 6/R = 11300) and the 
agreement between an existing calculation method and measurements on curved 
surfaces is greatly improved. Measurements in a rotating duct by Halleen & 
Johnston (1967) also support the analogy ( 5  4), which should be of general use 
for rough estimates of the effects of streamline curvature on shear flow 
development. 

2. Curved-flow equivalents of thermal-convection parameters 
For ease of reference to the meteorological literature, such as the general 

introduction of Lumley & Panofsky (1964), the x-axis is taken normal to the 
surface and the curved-flow parameters in equations (n b )  are given, in quotation 
marks, the names of their meteorological equivalents in equations (n a). In the 
case of small buoyancy or curvature effects the parameters in (i) to (iii) and (v) 
below all become the same (see (8)) but a discussion of their different physical 
bases is the simplest way of demonstrating the self-consistency of the analogy. 

(i) Elementary analysis shows that the circular frequency of small, vertical, 
adiabatic oscillations of an element of a perfect gas displaced from its initial 
height in a temperature-stratified environment is the Brunt- Vaisala frequency 

where I’ is the adiabatic lapse rate glc,. Neutral static stability corresponds to 
zero frequency and instability to imaginary frequency. 

Similarly, by assuming that an element of fluid displaced radially in a flow 
with radius of curvature R retains its angular momentum or total pressure it can 
be shown that the frequency of small oscillations in this case is 

“ wBV” = [ 2 p (UR)]’ = ($ g)* = ( 2  (mean vorticity) 

for an incompressible flow, where P is the total pressure and R is taken positive 
if the streamlines are convex upwards, or 

for a compressible flow a t  constant total temperature, in which the displaced 
element is supposed to retain its total temperature (the ‘strong Reynolds 
analogy’ of Morkovin (1964)) as well as its angular momentum. Rotta (1967) 
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shows that stability in compressible flow depends on the sign of a/az(UR)  by 
considering the difference between the actual radial density gradient and the 
‘ isentropic ’ density gradient 

If the total temperature of the mean flow is not uniform the frequency depends 
on the total temperature gradient as well as the angular-momentum gradient. 
We postpone further discussion of compressible flow to $ 5 .  Equation (1 b) was 
derived for the special case of solid-body rotation by Yeh (see Traugott 1958); 
here “wBv” is twice the angular velocity of rotation. 

(ii) The gradient Richardson number is the ratio of buoyancy to inertia forces 
and can equally be regarded as the square of the ratio of wBv to a typical frequency 
scale of the shear flow, taken as the mean vorticity aU/az. 

Then 

being positive for stable flow, and analogously for an incompressible curved flow 
we can define a ‘Richardson number’ 

<‘ R i ” = Z - - - ( U R )  RZ ua az I(%)’= ZS(l+S), 

where S = (U/R) / (aU/az) .  For small 8, Ri = ZS, the dimensionless parameter 
derived by Prandtl and various later authors (e.g. Stratford, Jawor & Smith 
1964, Giles, Hays & Sawyer 1966) by classical mixing-length arguments. The 
assumption of small S is justifiable in most flows where curvature effects do not 
dominate but in the unstable rotating-cylinder flow and in the curved-channel 
flow investigated by Eskinazi & Yeh (1956) the analogy of free convection occurs 
and UR II constant in the central part of the flow, just as T Y constant in the 
central part of the free convection flow between horizontal parallel planes. 

(iii) The JEux Richardson number, R,, is minus the ratio of turbulent energy 
production by buoyancy forces to production by shearing forces, 

where & is the thermometric heat flux and UW = - r /p.  It can be seen from the 
equations for the mean-square intensity or kinetic energy of each velocity com- 
ponent that the buoyant production goes into the w-component in the first 
instance while the shear production goes into the u-component : of course pressure 
fluctuations redistribute the energy so that Rf is not a direct measure of changes 
in partition of energy. However, Rf is a more meaningful parameter than Ri, 
because the latter is related to the static stability of an isolated element of fluid 
in a non-turbulent environment; Rf is at  least the ratio of two terms in a uni- 
versally valid, if intractable, equation for the turbulent kinetic energy 
+ p ( G +  3 + $) E &pq2. The turbulent Prandtl number, KMIKH, is RiIR,. In the 
absence of appreciable transport of turbulent energy by horizontal advection 

- 

12-2 
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or vertical diffusion, the turbulent energy equation becomes 

(shear production) + (buoyant production) = (dissipation) 

or 7(8U/az) (1 - R,) = dissipation (4) 
and most of the meteorological analysis quoted below applies to this special case, 
which is a good approximation in the inner layer of the atmospheric boundary 
layer (Busch & Panofsky 1968). 

In  curved flows (or, more exactly, flows analyzed by a system of cylindrical 
co-ordinates) production terms occur in the mean-square intensity equations 
for both the streamwise (u) and radial ( w )  components. The ratio of (minus) 
the ~ii-component ‘ buoyant ’ production to the zccomponent ‘shear ’ production is 

which, curiously, has the angular momentum gradient in the denominator but 
reduces to Ri if S is small, the case of most practical interest. I n  curved flow, .we 
note, there is always a simple relation between Ri and R,. The ‘turbulent 
Prandtl number’ has no useful meaning; it is formally ( 1  + ~ 5 2 ) ~ .  This expression 
for R, has been derived independently by Wyngaard (1967). 

(iv) The ‘stress Richardson number’ is probably a more meaningful quantity 
than the flux Richardson number. It is (minus) the ratio of the two productioii 
terms in the Reynolds stress equation for D%iE/Dt, rather than the energy equation 
for DqT/Dt. I n  buoyant flows, this ‘stress Richardson number’ is 

- 

ou 

i.e. 

In curved flows 

i.e. 

In both cases, R,/Rf is about 4 in near-neutral conditions (using laboratory 
turbulence data); one would expect it to be greater in stable conditions and less 
in unstable conditions. An interesting point is that in the inner layer of a boundary 
layer 2 contains an ‘inactive’ contribution originating in the outer layer, princi- 
pally because the inner layer sees the outer layer as an unsteady free stream. 
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This ‘inactive’ motion is so called because on a flat surface it does not contribute 
to the shear stress; but on a curved surface ( 5 6 )  shows that it does. The ‘stress 
Richardson number ’ concept is useful in other cases where extra ‘production’ 
terms occur, such as laterally diverging flows. 

(v) The Monin-Oboukhov length 

is written thus so as to appear as 
L =  W K  

buoyant production ’ 
where e is the local rate of dissipation of turbulent energy and L, is the dissipation 
length parameter, (17/p1)Q/(dissipation), similar to the parameter 

(Z)#/ (dissipation) 

used by Townsend (1958). L is constant in the inner layer of the Earth’s boundary 
layer, where the shear stress and heat flux are constant. 

Equation (4), the turbulent energy equation with negligible transport terms, 
can be rewritten 

- (7) 

so that if buoyancy effects are small 

m / L ,  N R~ 2 2s. 

In  the inner layer of a boundary layer L, = Kz in near-neutral conditions 
so that z/L N Rf.  

The analogous curved-flow parameter “L” can be defined similarly as 

dissipation. L,/K R ( ~ / p ) i  sgn - 
buoyant production 211 U 

(sgn7 appearing because E = (17/p1)%/Le) and is similarly related to Rf. Taking 
U = 2 O ( ~ / p ) j  as a representative value in the inner layer, “L” 5 0.06 R. 

(vi) Parameters for small curvature effects. If transport terms and curvature 
effects are small it can be seen from the preceding definitions that 

and any of these parameters could be used in empirical formulae for curvature 
effects. The last parameter has the computational advantage of containing no 
gradients; physically it is simply twice the ratio of the mean-flow angular velocity 
to a typical r.m.s. angular velocity of the turbulence (for which ( ~ / p ) b / L ,  is a more 
realistic expression than aU1a.z if the two are different). In the absence of large 
curvature effects L J S  is nearly a universal function of zl6 in attached boundary 
layers (Bradshaw, Ferriss & Atwell 1967); L, = Kz for zj6 < 0.2 and L, N 0.1 6 
for z/S > 0.25; L, N (intermittency): in the outermost part of the flow. 
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3. Application of the analogy 
None of the parameters in ( 8 )  is a quantitative measure of buoyancy effects on 

turbulent intensity or shear stress because transport terms, though usually small 
compared with production or dissipation, are not usually negligible; therefore 
there is no unique critical Richardson number for, say, the suppression of 
turbulence. If transport i s  negligible, however, the turbulent, energy equation 
reduces to the form ( 4 )  or ( 7 )  and we find that 

In  the following discussion we shall give the quantity on the left its common 
name, ‘mixing length’, and common symbol, 1; like the dissipation length 
parameter, it  is a defined quantity having the dimensions of length but not 
directly related to any length scale of the turbulent eddies. I n  the above equ a t’ ion 
R, or L,/L are quantitative measures of buoyancy effects but we cannot conclude, 
for instance, that the ratio of I a t  given z to its value a t  the same z with R, = 0,  
1/1, say, is simply 1-R, (so that the turbulence vanishes at R, = l ) ,  because 
LJz may itself depend on R,. 

Townsend (1958) showed that R, > t in an atmosphere with negligible trans- 
port, by considering the conservation equation for @. The curved-flow analogue 
of this equation is the energy equation for G, which contains unknown pressure 
transfer terms, so there is no analogue of Townsend’s result. 

The ratio l/E, is a quantitative measure of buoyancy effects on turbulent shear 
stress and many workers have examined its behaviour in the inner layer of the 
atmospheric boundary layer. No data are available for the outer layer, which 
is not usually clearly distinguished, and the best that can be done a t  this stage 
is to apply the inner-layer formulae to the whole of the boundary layer on a 
curved surface. Since the correction should be fairly small, the imprecision of the 
mixing-length concept is not too serious a drawback; Busch & Panofsky (1968)  
give a good idea of the imprecision of the meteorological data. As Prandtl noted, 
the mixing length in a curved flow should strictly be defined as 

so that “1” is again equal to L, ( 1  - “R,”) in the simple case mentioned above 
(see the discussion of ( 3 b ) ) ,  but any formula relating to “ I ”  can easily be put in 
terms of the mixing length as it is usually defined. 

The Monin-Oboukhov formula for the modification of the apparent mixing 
length by small buoyancy effects (see Lumley & Panofsky 1964) is one of the 
earliest of such formulae. Although largely superseded it will suEce for the 
present simple discussion for small Ri. It is 

( 1 0 4  1,/1 f r$ = 1 + (/!?z/L) 2: 1 +PRi 2: 1/(1 -/!?Ri). 

1,/1 2 1 + (/!?- 4) Ri. 

In  the case of curved flow this formula would apply to “ I ”  and the corresponding 
formula for 1 would be 

( l o b )  
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In  unstable conditions (Ri < 0), p is about 4.5 and in stable conditions it seems 
to be between 7 and 10; clearly we may neglect the difference between /3 andp- 4. 

Note that the simple-minded conclusion that 111, = (1 - (Richardson number)) 
is much nearer the facts if one inserts the stress Richardson number rather than 
the flux Richardson number. Since the Richardson number in this formula is 
supposed to represent the effect of buoyancy on shear stress rather than on turbu- 
lent intensity, this is probably more than a coincidence but we do not know enough 
about the Reynolds stress equation to be sure. 

The only direct evidence in favour of a Monin-Oboukhov type of formula in 
curved flow is the work of Giles et al. (1966), who found that the apparent mixing 
length in a wall jet on a curved surface varied as l/lo = 1 - 6 8  z 1 - 3Ri in the 
range -0.5 < Ri < 0.05. The Monin-Oboukhov formula is not valid for such 
large negative Richardson numbers and the formula of ‘Keyps ’ (an acronym of 
authors’ names) is commonly used instead; this is 

Z/Z, = (1 - 18Ri)t for - 0.5 < Ri < 0. 

Near Ri = 0 this coincides with the Monin-Oboukhov formula 

111, = 1 - 4.5Ri 

but a best straight line fit over the range - 0.5 < Ri < 0 is 

111, = 1 - 2Ri 

so that the ‘ Coanda effect ’ result of Giles et al. is at least compatible with meteoro- 
logical data. 

There is no direct evidence about the behaviour of p in laboratory boundary 
layers (we note that the commoner case of a convex wall (R > 0 )  implies 
stable conditions) although several recent authors (e.g. Thompson 1965) have 
suggested that curvature effects may be appreciable, even in typical aerofoil 
cases. Apparently, nearly all the authors who have investigated curvature effects 
chose such highly curved surfaces that the flow was grossly altered; for instance, 
in the concave wall experiments of Wilcken (1930)’ Pate1 (1965) and Mackrodt 
(1967), and in the curved-channel experiment of Eskinazi & Yeh (1956), the 
curved-flow analogue of free convection appeared. We cannot expect the present 
analogy to apply quantitatively to such flows. Even if IS/RI is as small as 11300, 
a value which may easily be reached on thick aerofoils or turbomachine blades, 
the Monin-Oboukhov formula with p = 7 indicates a change of about 10 yo in 
apparent mixing length in the outer part of a boundary layer (taking U = 0.877, 
and aU/ax = O.4U1/S). It is noteworthy that if SIR = 11300 the static pressure 
change across a typical boundary layer is less than one-half per cent of the free- 
stream dynamic pressure; the effect of curvature on the turbulence greatly 
exceeds the effect on the mean-motion equations. 

As a first attempt at  using the ideas of this paper, we have applied the Monin- 
Oboukhov formula for the mixing length to the dissipation length parameter Le 
used in the calculation method of Bradshaw et al. (1967), neglecting the buoyant 
production. This is roughly the same as applying the formula to the mixing 
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length throughout the boundary layer; the effects of curvature on the other em- 
pirical functions used in the calculation method have been ignored. We have 
replaced L, by 

using the form of ‘Richardson number’ recommended in $2(vi) and taking 
/3 = 7. The effect of the curvature correction on L, in a boundary layer in zero 
pressure gradient with 6/R = 1/80 is shown in figure 1. Since the velocity a t  

4 

FIGURE 1. Effect of curvature on dissipation length parameter. - - - , flat surface; 
, SIR = 1/80, zero pressure gradient, U,&/v -rr 15,000, /I = 7. S,,, i s  the distance 

from the surface at which U / U ,  = 0.995. 

y/S = 0.2 is as high as 0.8 of the free-stream value the large changes in L, in the 
outer layer do not produce proportionate changes in, say, the skin friction 
coefficient cf; in the case shown, the calculated cf was 0.89 times the value for 
a flat surface a t  the same momentum-thickness Reynolds number U,S,/v, about 
15,000. I n  strongly retarded boundary layers the outer layer exerts a greater 
influence but the effect of curvature on L, is less, according to  the simple formula, 
because U/(7/p)+  is less. However the use of the Monin-Oboukhov formula in 
the outer layer is justifiable only by the most naive mixing-length arguments, 
even if one accepts the plausibility of the basic analogy between curvature and 
buoyancy effects; a more refined approach would have to  include the effect of 
curvature on the large eddies, as expressed by some outer-layer average 
Richardson number like ~ S U J ( R ( T , ~ ~ / ~ )  h ) ,  which would change the energy 
diffusion as well as L,. 

The only well-authenticated test cases with prolonged regions of significant 
curvature are the aerofoil of Schubauer & Klebanoff (1951), with R = 9.4m 
downstream of the pressure minimum, where 6 = 6.4 em, and the experiment of 
Schmidbauer (1936) on a convex surface of radius 150 em (the boundary-layer 
thickness a t  x = 46 em being 1.1 cm) with a pressure gradient changing from 
mildly adverse to strongly favourable. The results of calculations by the method 
of Bradshaw et al. with and without the simple curvature correction are shown in 
figures 2 and 3. I n  both cases the ‘experimental’ surface shear stress has been 
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FIGURE 2. The boundary layer of Schubauer & Klebanoff (1951). A ,  experiment; - - -, 
calculation without curvature correction ; ___ , calculation with curvature correction. 
H is the ratio of displacement thickness 6, to momentum thickness 6,. 

inferred from the logarithmic law close to the surface and the imbalance in the 
momentum integral equation has been used to deduce the apparent spanwise 
convergence of the experimental flow; the calculations were then carried out 
with the same distribution of convergence. The convergence values, as used by 
Thompson (1964), were kindly supplied by the author; those used for the 
Schubauer & Klebanoff runs differ slightly from the values used by Bradshaw 
et al. The assumed initial shear stress profiles are obviously slightly wrong in 
both cases, particularly that of Schmidbauer, since the initial trend of H is wrong; 
this, of course, has nothing to do with the reliability of the calculation method 
as such. The improvement in the calculated results obtained by using the simple 
curvature correction is very encouraging and suggests that the correction should 
be adequate for most aerofoil calculations, pending a better understanding of 
the effect of buoyancy or curvature on the turbulence structure. 
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FIGURE 3. Tho boundary layer of Schmidbauer ( 1  936). 0 ,  experiment; - - - , calcula- 
tion without curvature correction; - , calculation with curvature correction. 

4. Rotating flows 
The analysis and discussion of 342 and 3 were carried through for flow over 

fixed curved surfaces, for simplicity, but exactly the same arguments can be 
applied to shear layers in rotating fluids, especially rotation about a spanwise 
axis (i.e. an axis perpendicular to the plane of the mean rate of strain). In  this 
case the ' centrifugal force ' can be absorbed in the pressure gradient term if the 
flow is analyzed with respect to axes fixed in the body and the only extra term 
in the equations of motion is the apparent Coriolis force V x 8, which, to the 
boundary-layer approximation, reduces to a force 2QU in the z direction, corre- 
sponding to the force U2/R in the z direction in flow over a curved surface. To 
emphasize this correspondence we take fJ to be positive clockwise in the (2, z)  -plane. 
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The ‘ Brunt-V&isala frequency ’ is given by 

so that the gradient ‘Richardson number’ is 

where S = ZO/(aU/az). 

v-component production term 2Q27 and a u-component production term 
The turbulent energy equation given by Halleen & Johnston (1967) has a 

Tau lax -  Z Q T .  

Therefore the flux Richardson number is 

The positive square root must be taken for S > - 8, and conversely. As in the case 
of curved flow, Rf reduces to Ri for small ‘buoyancy’. The stress Richardson 
number is 

R, = ($1~”) Rf ( 5 4  

as in curved flow. The Monin-Oboukhov length is 

so that 

sgn 7 .  & - 2Kfi-k 
L (W 

The Monin-Oboukhov formula in this case can be integrated exactly, as in 
a stable atmosphere. If we put Ri = 2!2/(aU/az) and use 1/1, = 1-PRi the 
mixing-length formula gives 

or 
U = {(T, /~)*/K} (log z + constant) + 2PQz 

in the inner layer where 7 = rW and I, = Kz. 
A rough estimate of the value of /3 can be obtained from Halleen & Johnston’s 

measurements in fully developed flow in a rectangular duct rotating about an 
axis parallel to the longer side of the rectangle, by plotting the deviations from 
the logarithmic profile (in a stationary duct the logarithmic profile extends nearly 
to the centre although the conditions r = rW and L, = Kz are certainly not 
satisfied at  more than about 0.1 duct heights from each wall). The results are 
shown in figure 4; P is about 4 on the stable side and 2 on the unstable side. 
Although these values are gratifyingly consistent, they are not quantitatively 
useful because the straight lines in figure 4 are based on the deviations in the 
range 200 < u,z/v < 400 whereas the analysis applies only to the inner layer 
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FIGURE 4. Departure from logarithmic profile in rotating duct flow (Halleen & Johnston 
1967). (a )  Stable: 0 ,  nv/u; = 0.00328; 0, 0.00379; A, 0.0120. (6) Unstable: 0, 
Qv/u: = 0.00269; a, 0.00510; A ,  0.00738. 
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which ends at u,z/v less than 200. More experiments would be needed before one 
could say definitely that /?was smaller in rotating flow than in curved flow; one 
would expect less difference between rotation and curvature than between 
curvature and buoyancy, because both Coriolis and ‘ centrifugal ’ forces depend 
on U-component velocity whereas buoyancy forces depend on temperature. 

Combined curvature and rotation effects are found in axisymmetric rotating 
flows; an example is the boundary layer on a rotating cylinder in an axial stream 
investigated by Parr (1963). The combined Richardson number is found to be 

where U ,  is the free-stream speed, U the axial component of velocity, z the 
radial co-ordinate and h = !2R/Um. The Richardson number is zero in the axial 
free stream, as we should expect, and in general the effects of curvature and 
rotation oppose each other. It should be noted that this is not a truly three- 
dimensional flow; the velocity profiles measured with respect to the cylinder are 
collinear and the chief effect of rotation is simply to increase the length of the 
(helical) path travelled by the fluid from one end of the cylinder to the other; the 
boundary-layer thickness at the downstream end of Parr’s rotating forebody is 
indeed very nearly proportional to this path length, x J( 1 + A2) ,  so that the net 
dynamical effects of rotation and curvature were small in this experiment. 
According to the present analysis, the velocity gradient that determines the 
Brunt-Vaisala frequency is a Vjaz, where V is the circumferential component, 
whereas the velocity gradient that represents a typical turbulence frequency is 
the resultant a( U 2  + Vz):/az; this accounts for the odd factors in h ( = tan-1 V /  U )  
in theRichardsonnumber. I am grateful to Dr T. S. Chamof Cambridge University 
Engineering Department for a discussion of P a d s  flow. 

5. Compressible flow 
Rotta (1967) used the turbulent energy equation to derive a formula for curva- 

ture effects in a compressible flow. Rotta neglects the difference between I and “I” 
and assumes that L, is unaltered, so that his final result is in error, but he makes 
the important point that turbulent energy is produced by the product of turbu- 
lent mass flux p% and mean acceleration in the z direction, U2/R.  The effect is 
to multiply R, by a factor l++(y -  1) M 2 ;  it can be seen from ( l c )  that Ri is 
similarly altered (in a first draft of this paper I wrongly said that Rotta’s factor 
1 + (y - 1)  M* was not directly related to the factor in (1 c ) ;  it is, because Rotta 
evaluated p x  by using the ‘strong Reynolds analogy’, but Rotta’s factor is 
wrong, for the reasons mentioned above). The implication is that curvature 
effects can be much larger at  high supersonic speeds, and Thomann (1968) has 
found large changes in heat transfer at  M = 2.5 on curved surfaces. In high- 
temperature low-speed flows (Barrow 1968) the factor 1 + $(y - 1) M 2  is replaced 
by T I T f r e e  stream a ~ ~ r o x i m a t e l ~ .  
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6. Conclusions 
A formally exact analogy can be drawn between meteorological parameters 

and the parameters describing the effect on a turbulent flow of streamline 
curvature (in the plane of the principal rate of strain) or rotation (about an axis 
normal to that plane). A fairly close analogy between the phenomena is implied 
by the close correlation between temperature fluctuations (which produce 
buoyancy fluctuations) and u-component velocity fluctuations (which produce 
centrifugal or Coriolis ‘force ’ fluctuations). 

A curved-flow form of the Monin-Oboukhov formula for the change of apparent 
mixing length with Richardson number is found to be reasonably consistent with 
the limited data and its use to calculate the change of dissipation length para- 
meter (a generalized mixing length) produces a great improvement in the 
agreement between prediction and experiment in boundary layers on curved 
walls. 

However, the meteorological formulae relate only to the inner layer of the 
Earth’s boundary layer and it is likely that the effects of curvature or buoyancy 
on the outer layer of a boundary layer will be rather different because of the 
effects of body forces on the processes of turbulent energy diffusion and on the 
large eddy structure in general. More experimental work is needed to  investigate 
this point and to establish whether the extra energy production terms that occur 
in curved compressible flow (Rotta 1967) cause curvature effects to increase 
rapidly with Mach number. This last point is particularly important in view of 
the frequent occurrence of highly curved surfaces in engine intakes and other 
supersonic flows. 
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